Resources
V. Reiner "Signed Posets"
R. Stanley "A Symmetric Generalization of the Chromatic Polynomial of a Graph"
T. Zaslausky "Signed Graph Coloring"
R. Adin et al. "Character Formulas and Descents for the Hyperoctahedrial Group"

Hannah Johnson, Eric Fawcalt, Mike Reilly, Kat Husar
An example to give intuition about stanley 3.1

* Proof of 3.3

Poses
Root systems
signed posits
descent sets and linear extensions

What we have done so far...
stanley's theorem
for a graph G with n verticies

$$
(-1)^{n} \chi_{6}(-1)=\text { of acyclic orientations }
$$

of G

Zaslauski's Theorem
for a signed graph \sum with n verticies
 orientations of G
generalization
for B-symmetric chromatic polynomial

Generalization with signed graph and B-symetric chromatic polynomial

Stanley's Theorem (2)

$$
x_{G}=\sum_{\lambda+d} c_{\lambda} e_{\lambda}
$$

X_{G} symmetric chromatic e_{λ} elementary symmetric functions

What we are trying to find

$$
\begin{aligned}
& \text { * } a_{j}(G)=\text { \# of a cyclic } \\
& \text { orientations } \\
& \text { with } j \sin h s \\
& \text { * } l(\lambda)=\text { \# of sets created } \\
& \text { by partition }
\end{aligned}
$$

Elementary Symmetric Functions

$$
e_{k}:=\sum_{1 \leq j_{1}<j_{2}<\cdots<j_{k}} x_{j_{1}} \cdots x_{j^{k}}
$$

Back to our example:

$$
\begin{aligned}
X \bullet & \widehat{x_{1} x_{1}}+x_{1} x_{2}+x_{1} x_{3}+\cdots \\
& +x_{2} x_{1}+\widehat{x_{2} x_{2}}+x_{2} x_{3}+\cdots \\
& +x_{3} x_{1}+x_{3} x_{2}+\widehat{x_{3} x_{3}}+\cdots \\
& \vdots \\
= & 2\left(x_{1} x_{2}+x_{1} x_{3}+\cdots+x_{2} x_{3}+x_{2} x_{4}+\cdots+x_{n-1} x_{n}+\cdots\right. \\
= & 2 e_{2}
\end{aligned}
$$

Note: $X_{K_{k}}=k!e_{k}$

B-symmetric chromatic function

$$
Y_{G}\left(\cdots, x_{-2}, x_{-1}, x_{1}, x_{2}, \ldots\right):=\sum_{\substack{\kappa: V(G) \rightarrow Z \backslash \backslash\{0\} \\ \text { proper }}} \prod_{v \in V(G)} x_{\kappa(v)}
$$

Signed power functions: $p_{a, b}:=\sum_{i \in Z \backslash(0)} x_{i}^{a} x_{-i}^{b}$. Notice that $p_{a, b}=p_{b, a}$.
Example:

$$
Y_{O-}=\cdots+x_{-2}+x_{-1}+x_{1}+x_{2}+\cdots=p_{1,0}
$$

Quasi -Symmetric function

$$
\begin{aligned}
& {\left[x_{i 1}^{a_{1}} x_{i_{2}}^{a_{2}} \cdots x_{i / k}^{a_{k}}\right] F(x)=\left[x_{j}{ }_{1}^{a_{1}} x_{j_{2}}^{a_{2}} \ldots x_{j k}^{a_{k}}\right] F(x) \quad \text { where } i_{1}<i_{2}<\ldots<i_{k}} \\
& \text { Ex. } \quad f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{2} x_{2} x_{3}+x_{1}^{2} x_{2} x_{4}+x_{1}^{2} x_{3} x_{4}+x_{2}^{2} x_{3} x_{4}
\end{aligned} \quad j_{1}<j_{2}<\ldots<j_{k} .
$$

Quasi: - Symmetric basis

$$
Q_{s, d}(x)=Q_{s}(x)=\sum_{i_{1} \leq \cdots \leq i_{d}} x_{i_{1}} x_{i_{2}} \cdots x_{i d} \text { where } S \text { is a subset of }[d-1]:=\{1,2, \ldots d-1\}
$$

$$
i j<i j+1 ; f j \in S
$$

Ex. let $d=4 \quad[d-1]=\{1,2,3\} \quad$ let $s=\{2,3\}$

$$
Q_{5,4}(x)=\sum_{i_{1} \leq i_{2} \leq i_{3} \leq i_{4}} x_{i_{1}} x_{i_{2}} x_{i_{3}} x_{i_{4}}=\sum_{i_{1} \leq i_{2}<_{3}<i_{4}} x_{i_{1}} x_{i_{2}} x_{i_{3}} x_{i_{4}}=x_{1}^{2} x_{2} x_{3} x_{4}+x_{1} x_{2} x_{5} x_{100} \ldots
$$

The convention for the rest of my presentation:

Poses - a partial order
Ex.

linear extension -a total order that preserves
$3 \mathrm{~d} d>C>E>S>F$ the order from the poses
linear extension as a permutation:

$$
\alpha=\left(\begin{array}{ccccc}
3 r d & C & E & S & f \\
1 & 2 & 3 & 4 & 5
\end{array}\right)
$$

linear extension as a picture:

represent this poset as a picture:

for 1 graph: there is only 1 posit
Order reversing linear extension

$$
\begin{gathered}
D(\alpha)=\left\{j \mid a_{j}>a_{j+1}\right\} \\
\left(\omega\left(\alpha^{-1}(1)\right), \ldots, \omega\left(\alpha^{-1}(d)\right)\right)=\left(a_{1}, a_{2}, \ldots\right. \\
\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(3,5,4,2,1) \\
=(3,5,4,2,1) \\
j=12345 \\
j(\alpha)=\{2,3,4\}
\end{gathered}
$$

$$
\omega=\left(\begin{array}{ccccc}
F & S & 3 r & E & C \\
1 & 2 & 3 & 4 & 5
\end{array}\right) \quad\left(\omega\left(\alpha^{-1}(1)\right), \ldots, \omega\left(\alpha^{-1}(d)\right)\right)=\left(a_{1}, a_{2}, \ldots, a_{d}\right)
$$

You choose 1ω

Descent set (Stanley)
There can be 1 to many linear extensions
$\mathcal{L}(P, \omega)=\{\alpha\}$ the set of all linear extensions

Stanley defines the following:

$$
x_{p}(x)=\sum_{\substack{\text { compatible } \\ \text { with the oriatation }}} x_{x\left(v_{1}\right)} \cdots x_{k\left(v_{j}\right)}
$$

Theorem 3.1

$$
X_{p}=\sum_{\alpha \in \mathcal{L}} Q_{D(\alpha)}(P, \omega)
$$

$$
x_{p}(x)=\sum_{\substack{k \text { compatible } \\ \text { with the orientation }}} x_{x\left(v_{1}\right)} \cdots x_{k\left(v_{d}\right)}
$$

$$
x_{p}(x)=\sum_{\substack{k\left(v_{1}\right) \leq k\left(v_{2}\right) \cdots \leq k\left(v_{d}\right)}} x_{k\left(v_{1}\right)} \cdots x_{k\left(v_{d}\right)}
$$

$$
Q_{S}(x)=\sum_{i_{1} \leq \ldots \leq i_{1}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{2}}
$$

$$
i_{j<i j+1: f j \in s}
$$

Ex.

:'m going to color this graph with colors
with are compatible
that
have three colors: $a j b, c$
$a>b>c$

Combine K_{1} and w to create a unique α_{1}

Theorem 3.3
symetric chromatic: $X_{6}=\sum_{\lambda+1} c_{\lambda} l_{\lambda}$
let $a_{j}(G)=\#$ of acyclic orientations with j sinks

$$
a_{j}(G)=\sum_{\substack{\lambda \vdash d \\ l(\lambda)=j}} c_{\lambda}
$$

E_{x}. triangle with $1 \sin k$ has 6 acyclic orientations

$$
x_{\Delta}=3!e_{3}
$$

Proof

- θ is an acyclic orientation of G
- K is a proper coloring
- θ-compatible: K is θ-comptitile if

$$
\stackrel{\rightharpoonup}{\longrightarrow} \underset{x_{k}(a)>k(b)}{\longrightarrow}
$$

- Every proper coloring is compatible
with ore acyclic orientation with one acyclic orientation
- $k_{\theta}=\{\theta$ compatible proper colorings\}
- $X_{G}=\{$ all proper colorings $\}$

$$
\begin{array}{r}
\circ K_{\sigma}=U_{\theta} k_{\theta} \Rightarrow x_{G}=\sum_{\theta} x_{\theta} \\
x_{G}=\sum_{k \in K_{G}} x^{k}=\sum_{\theta} \sum_{k \in K_{\theta}} x^{k}=\sum_{\theta} x_{\theta}
\end{array}
$$

- $\bar{\theta}$ is the transitive closure of θ
notice that $\bar{\theta}$ is a poset since θ is acydic
- $X_{\theta}=X \bar{\theta}$ since $K_{\theta}=K_{\bar{\theta}}$
- Thus $X_{G}=\sum_{\theta} x_{\bar{\theta}}$

Linear transformation: $\quad f(x+y)=f(x)+f(y) \quad f(x)=c f(x)$

Claim: for any d element poser $\varphi\left(x_{p}\right)=t^{m}$
$m=$ number of minimal elements
Proof of Claim:

* ω is order reversing bijection
* steps to get linear extension $\alpha=\left(a_{1}, \ldots, a_{\rho}\right)$ with descent set $\{i+1, i+2, \ldots d-1\}$

1. V is the minimal element of P with largest $w(v)$ value
2. choose any i minimal elements of P that are not v
list in increasing order of lables
3. list v
4. list remaining elements of P in decreasing order of lables

c $m=4$ poses p

* There are $\binom{m-1}{i}$ choices for v_{1}, \ldots, v_{i}

Thus $\varphi\left(x_{p}\right)=\sum_{i=0}^{m-1}\binom{m-1}{i} t(t-1)^{i}$
since $X_{p}=\sum_{\alpha \in \mathcal{L}(P, \omega)} Q_{D(\alpha)}$ by 3.1
and there are m unique descent sets that follow $s=\{i+1, i+2, \ldots d-1\}$ and $\sum_{i=0}^{m-1}\binom{m-1}{i}$ corresponding linear extension

$$
\varphi\left(Q_{s}\right)=\left\{\begin{array}{cl}
t(t-1)^{i} & \text { if } s=\{i+1, i+2, \ldots d-1\} \\
0 & \text { otherwise }
\end{array}\right.
$$

We made it!!!

$$
\varphi\left(x_{p}\right)=\sum_{i=0}^{m-1}\binom{m-1}{i} t(t-1)^{i}=t^{m}
$$

Lets Finish up 3.3:

$$
x_{6}=\sum_{\theta} x_{\bar{\theta}}
$$

if θ is acyclic then the number of minimal elements is the number of sinlls

$$
\begin{gathered}
\varphi\left(x_{G}\right)=\varphi\left(\sum_{\theta} x_{\bar{\theta}}\right)=\sum_{j} a_{j}(\sigma) t^{j} \\
x_{G}=\sum_{\lambda+d} c_{\lambda} e_{\lambda}
\end{gathered}
$$

let P_{λ} be the poset which is disjoint union of chan ins of cardinalities $\lambda_{1}, \lambda_{2}, \ldots \lambda_{j}$
Thus $x_{p_{\lambda}}=e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \cdots$ thus $\varphi\left(e_{\lambda}\right)=t^{l(\lambda)}$

$$
\begin{array}{llllll}
\lambda=\{1231456781910\} & \vdots & l & l(\lambda)=3 \\
\lambda_{1}=3 & \lambda_{2}=5 & \lambda_{3}=2 & 3 & ! &
\end{array}
$$

$$
\begin{gathered}
\varphi\left(x_{G}\right)=\varphi\left(\sum_{\lambda+d} c_{\lambda} l_{\lambda}\right)=\sum_{\lambda} c_{\lambda} t^{l(\lambda)} \\
\sum_{\lambda+1} c_{\lambda} t^{l(\lambda)}=\sum_{j} a_{j}(G) t^{j} \\
a_{j}(G)=\sum_{\substack{\lambda+d \\
l(\lambda)=j}} c_{\lambda}
\end{gathered}
$$

